A sequential procedure for neighborhood selection-of-the-best in optimization via simulation
نویسندگان
چکیده
We propose a fully sequential indifference-zone selection procedure that is specifically for use within an optimization-via-simulation algorithm when simulation is costly, and partial or complete information on solutions previously visited is maintained. Sequential Selection with Memory guarantees to select the best or near-best alternative with a user-specified probability when some solutions have already been sampled, their previous samples are retained, and simulation outputs are i.i.d. normal. For the case when only summary information on solutions is retained, we derive a modified procedure. We illustrate how our procedures can be applied to optimization-via-simulation problems and compare its performance with other methods by numerical examples.
منابع مشابه
Selection-of-the-best Procedures for Optimization via Simulation
We propose fully sequential indifference-zone selection procedures that are specifically for use within an optimizationvia-simulation algorithm when simulation is costly and partial or complete information on solutions previously visited is maintained. Sequential Selection with Memory guarantees to select the best or near-best alternative with a user-specified probability when some solutions ha...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملHybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کاملOPTIMAL DESIGN OF DOUBLE LAYER GRIDS CONSIDERING NONLINEAR BEHAVIOUR BY SEQUENTIAL GREY WOLF ALGORITHM
The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processe...
متن کاملDevelopment of PSPO Simulation Optimization Algorithm
In this article a new algorithm is developed for optimizing computationally expensive simulation models. The optimization algorithm is developed for continues unconstrained single output simulation models. The algorithm is developed using two simulation optimization routines. We employed the nested partitioning (NP) routine for concentrating the search efforts in the regions which are most like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 173 شماره
صفحات -
تاریخ انتشار 2006